Article 11213

Title of the article

MODELING OF A PULSE RADIATION-INDUCED POWER SOURCE 

Authors

Pchelintseva Ekaterina Sergeevna, Candidate of physical and mathematical sciences, head of the laboratory probe and electronic microscopy, Research Technological Institute, Ulyanovsk State University (Ulyanovsk, 42 L.Tolstogo str.), nanolabniti@gmail.com
Novikov Sergey Gennad'evich, Candidate of engineering sciences, head of the laboratory of solid state electronics, Research Technological Institute, Ulyanovsk State University (Ulyanovsk, 42 L. Tolstogo str.), novikovsg@ulsu.ru
Berintsev Aleksey Valentinovich, Researcher, laboratory of solid state electronics, Research Technological Institute, Ulyanovsk State University (Ulyanovsk, 42 L. Tolstogo str.), berints@mail.ru
Kostishko Boris Mikhaylovich, Doctor of physical and mathematical sciences, professor, head of the subdepartment of physical methods in applied research, rector of Ulyanovsk State University (Ulyanovsk, 42 L. Tolstogo str.), kost@sv.uven.ru
Svetukhin Vyacheslav Viktorovich, Doctor of physical and mathematical sciences, professor, head of sub-department of materials science, director of Research Technological Institute, Ulyanovsk State University (Ulyanovsk, 42 L.Tolstogo str.), slava@sv.uven.ru 

Index UDK

537.533.9 

Abstract

Objective: The present work considers modeling of pulse radiationinduced power source based on 63Ni isotope. Modeling has been performed in LTspice IV system in accordance with the structural chart of the pulseradiationinduced power source. Betavoltaic power source is a cell that combines 1000 silicon pin- structures with p-n- junction depth of 1.2 μm and silicon photodiodes with p-njunction depth of 6.5 μm connected in series and in parallel with a total junction area of 1000 cm2. From a designed pulse radiation-induced power source the authors have obtained an increase of the output voltage up to 1.3 V for the DC operation and an increase of the output pulse current up to 200 mA, voltage pulse up to 180 mV for the pulsed operation with the pulse duration under 2ms and repletion rate of about 800 Hz. The results demonstrate that the pulse radiation-induced power source can operate efficiently over 50 years generating current up to 200 mA at the maximum discharge. The sources can be employed for microelectromechanical systems requiring long lifetime power source able to operate in nooks and severe climates. 

Key words

betavoltaic effect, radiation-induced power generation, modeling of physical processes. 

Download PDF
References

1. Guo H., Lal A. The 12th International Conference on Solid State Sensors, Actuators and Microsystems (Boston, 2003). Boston, 2003, pp. 36–39.
2. Anufrenko V. B., Mikhaylova A. M., Palagushkin A. N. Nano- i mikrosistemnaya tekhnika [Nanosystems and Microsystems technology]. 2008, no. 8, pp. 30–38.
3. Blanchard J., et al. Asia-Pacific Conference of Transducers and Micro-Nano Technology. APCOT.2006,pp.1–4.
4. Nagornov Yu. R., Pchelintseva E. S., Kostishko B. M., Kornilov O. A., Radchenko V. M., Risovannyy V.D.Izvestie vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physics and mathematics sciences]. 2009, no. 3 (11), pp. 113–125.
5. Pchelintseva E. S., et al. VANT. Fizika radiatsionnogo vozdeystviya na radioelektronnuyu apparaturu [Physics of radiation exposure of radio electronic equipment]. 2011, no. 1, pp. 65–69.

 

Дата создания: 27.01.2014 12:39
Дата обновления: 21.07.2014 08:45